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Ranked retrieval

Thus far, our queries have all been Boolean.

Documents either match or don't.

Good for expert users with precise understanding of their
needs and the collection.

Also good for applications: Applications can easily consume
1000s of results.

Not good for the majority of users.

Most users are not capable of writing Boolean queries (or they
are, but they think it's too much work).

Most users don't want to wade through 1000s of results.

This is particularly true of web search.
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Problem with Boolean search: Feast or famine

Boolean queries often result in either too few (=0) or too
many (1000s) results.

Query 1: �standard user dlink 650� → 200,000 hits

Query 2: �standard user dlink 650 no card found�: 0 hits

It takes a lot of skill to come up with a query that produces a
manageable number of hits.

With a ranked list of documents it does not matter how large
the retrieved set is.
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Scoring as the basis of ranked retrieval

We wish to return in order the documents most likely to be
useful to the searcher.

How can we rank-order the documents in the collection with
respect to a query?

Assign a score � say in [0, 1] � to each document

This score measures how well document and query �match�.
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Query-document matching scores

We need a way of assigning a score to a query/document pair.

Let's start with a one-term query.

If the query term does not occur in the document: score
should be 0.

The more frequent the query term in the document, the higher
the score

We will look at a number of alternatives for doing this.
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Take 1: Jaccard coe�cient

Recall from IIR 3: A commonly used measure of overlap of two
sets

Let A and B be two sets

Jaccard coe�cient:

jaccard(A,B) =
|A ∩ B|
|A ∪ B|

jaccard(A,A) = 1

jaccard(A,B) = 0 if A ∩ B = 0

A and B don't have to be the same size.

Always assigns a number between 0 and 1.
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Jaccard coe�cient: Example

What is the query-document match score that the Jaccard
coe�cient computes for:

Query: �ides of March�
Document �Caesar died in March�
?
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What's wrong with Jaccard?

It doesn't consider term frequency (how many occurrences a
term has).

Rare terms are more informative than frequent terms. Jaccard
doesn't consider this information.

We need a more sophisticated way of normalizing for length.

Later in this lecture, we'll use |A ∩ B|/
√
|A ∪ B| (cosine) . . .

. . . instead of |A ∩ B|/|A ∪ B| (Jaccard) for length
normalization.

10 von 47 Scoring



Term frequency tf-idf weighting The vector space

What's wrong with Jaccard?

It doesn't consider term frequency (how many occurrences a
term has).

Rare terms are more informative than frequent terms. Jaccard
doesn't consider this information.

We need a more sophisticated way of normalizing for length.

Later in this lecture, we'll use |A ∩ B|/
√
|A ∪ B| (cosine) . . .

. . . instead of |A ∩ B|/|A ∪ B| (Jaccard) for length
normalization.

10 von 47 Scoring



Term frequency tf-idf weighting The vector space

What's wrong with Jaccard?

It doesn't consider term frequency (how many occurrences a
term has).

Rare terms are more informative than frequent terms. Jaccard
doesn't consider this information.

We need a more sophisticated way of normalizing for length.

Later in this lecture, we'll use |A ∩ B|/
√
|A ∪ B| (cosine) . . .

. . . instead of |A ∩ B|/|A ∪ B| (Jaccard) for length
normalization.

10 von 47 Scoring



Term frequency tf-idf weighting The vector space

What's wrong with Jaccard?

It doesn't consider term frequency (how many occurrences a
term has).

Rare terms are more informative than frequent terms. Jaccard
doesn't consider this information.

We need a more sophisticated way of normalizing for length.

Later in this lecture, we'll use |A ∩ B|/
√
|A ∪ B| (cosine) . . .

. . . instead of |A ∩ B|/|A ∪ B| (Jaccard) for length
normalization.

10 von 47 Scoring



Term frequency tf-idf weighting The vector space

What's wrong with Jaccard?

It doesn't consider term frequency (how many occurrences a
term has).

Rare terms are more informative than frequent terms. Jaccard
doesn't consider this information.

We need a more sophisticated way of normalizing for length.

Later in this lecture, we'll use |A ∩ B|/
√
|A ∪ B| (cosine) . . .

. . . instead of |A ∩ B|/|A ∪ B| (Jaccard) for length
normalization.

10 von 47 Scoring



Term frequency tf-idf weighting The vector space

Recall: Binary incidence matrix

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0
. . .

Each document is represented by a binary vector ∈ {0, 1}|V |.
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From now on, we will use the frequencies of terms

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 157 73 0 0 0 1
Brutus 4 157 0 2 0 0
Caesar 232 227 0 2 1 0
Calpurnia 0 10 0 0 0 0
Cleopatra 57 0 0 0 0 0
mercy 2 0 3 8 5 8
worser 2 0 1 1 1 5
. . .

Each document is represented by a count vector ∈ N|V |.
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Bag of words model

We do not consider the order of words in a document.

John is quicker than Mary and Mary is quicker than John are
represented the same way.

This is called a bag of words model.

In a sense, this is a step back: The positional index was able
to distinguish these two documents.

We will look at �recovering� positional information later in this
course.

For now: bag of words model
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Term frequency tf

The term frequency tft,d of term t in document d is de�ned as
the number of times that t occurs in d .

We want to use tf when computing query-document match
scores.

But how?

Raw term frequency is not what we want.

A document with 10 occurrences of the term is more relevant
than a document with one occurrence of the term.

But not 10 times more relevant.

Relevance does not increase proportionally with term
frequency.
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Term frequency tf-idf weighting The vector space

Log frequency weighting

The log frequency weight of term t in d is de�ned as follows

wt,d =

{
1 + log10 tft,d if tft,d > 0
0 otherwise

0 → 0, 1 → 1, 2 → 1.3, 10 → 2, 1000 → 4, etc.

Score for a document-query pair: sum over terms t in both q

and d :
matching-score =

∑
t∈q∩d (1 + log tft,d )

The score is 0 if none of the query terms is present in the
document.
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The score is 0 if none of the query terms is present in the
document.
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Document frequency

Rare terms are more informative than frequent terms.

Consider a term in the query that is rare in the collection (e.g.,
arachnocentric)

A document containing this term is very likely to be relevant.
→ We want a high weight for rare terms like arachnocentric.

Consider a term in the query that is frequent in the collection (e.g., high,
increase, line)

A document containing this term is more likely to be relevant than a
document that doesn't, but it's not a sure indicator of relevance.
→ For frequent terms, we want positive weights for words like high,
increase, and line, but lower weights than for rare terms.

We will use document frequency to factor this into computing the
matching score.
The document frequency is the number of documents in the collection that
the term occurs in.
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idf weight

dft is the document frequency, the number of documents that t
occurs in.

df is an inverse measure of the informativeness of the term.
We de�ne the idf weight of term t as follows:

idft = log10
N

dft

idf is a measure of the informativeness of the term.
We use logN/dft instead of N/dft to �dampen� the e�ect of idf.
So we use the log transformation for both term frequency and
document frequency.
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Examples for idf

Compute idft using the formula: idft = log10
1,000,000

dft

term dft idft
calpurnia 1

6

animal 100

4

sunday 1000

3

�y 10,000

2

under 100,000

1

the 1,000,000

0
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E�ect of idf on ranking

idf a�ects the ranking of documents only if the query has at
least two terms.

For example, in the query �arachnocentric line�, idf weighting
increases the relative weight of arachnocentric and decreases
the relative weight of line.

idf has no e�ect on ranking for one-term queries.

Questions about idf?
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Collection frequency vs. Document frequency

Word Collection frequency Document frequency

insurance 10440 3997
try 10422 8760

The collection frequency of t is the number of tokens of t in
the collection where we count multiple occurrences.

Why these numbers?

Which word is a better search term (and should get a higher
weight)?

This example suggests that df is better for weighting that cf.
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tf-idf weighting

The tf-idf weight of a term is the product of its tf weight and
its idf weight.

wt,d = (1 + log tft,d ) · log N

dft

Best known weighting scheme in information retrieval

Note: the �-� in tf-idf is a hyphen, not a minus sign!

Alternative names: tf.idf, tf x idf
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Summary: tf-idf

Assign a tf-idf weight for each term t in each document d :
wt,d = (1 + log tft,d ) · log N

dft

N: total number of documents

Increases with the number of occurrences within a document

Increases with the rarity of the term in the collection
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Term, collection and document frequency

Quantity Symbol De�nition

term frequency tft,d number of occurrences of t in d
document frequency dft number of documents in the

collection that t occurs in
collection frequency cft total number of occurrences of

t in the collection

Relationship between df and cf?

Relationship between tf and cf?
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Binary → count → weight matrix

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 5.25 3.18 0.0 0.0 0.0 0.35
Brutus 1.21 6.10 0.0 1.0 0.0 0.0
Caesar 8.59 2.54 0.0 1.51 0.25 0.0
Calpurnia 0.0 1.54 0.0 0.0 0.0 0.0
Cleopatra 2.85 0.0 0.0 0.0 0.0 0.0
mercy 1.51 0.0 1.90 0.12 5.25 0.88
worser 1.37 0.0 0.11 4.15 0.25 1.95
. . .

Each document is now represented by a real-valued vector of tf-idf weights
∈ R|V |.
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Documents as vectors

Each document is now represented by a real-valued vector of
tf-idf weights ∈ R|V |.

So we have a |V |-dimensional real-valued vector space.

Terms are axes of the space.

Documents are points or vectors in this space.

Very high-dimensional: tens of millions of dimensions when
you apply this to a web search engine

This is a very sparse vector - most entries are zero.
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Queries as vectors

Key idea 1: do the same for queries: represent them as vectors
in the space

Key idea 2: Rank documents according to their proximity to
the query

proximity = similarity

proximity ≈ negative distance

Recall: We're doing this because we want to get away from
the you're-either-in-or-out Boolean model.

Instead: rank more relevant documents higher than less
relevant documents
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How do we formalize vector space similarity?

First cut: distance between two points

( = distance between the end points of the two vectors)

Euclidean distance?

Euclidean distance is a bad idea . . .

. . . because Euclidean distance is large for vectors of di�erent
lengths.
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Why distance is a bad idea

The Euclidean distance of ~q
and ~d2 is large although the
distribution of terms in the
query q and the distribution of
terms in the document d2 are
very similar.
Questions about basic vector
space setup?
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Use angle instead of distance

Rank documents according to angle with query

Thought experiment: take a document d and append it to
itself. Call this document d ′.

�Semantically� d and d ′ have the same content.

The angle between the two documents is 0, corresponding to
maximal similarity.

The Euclidean distance between the two documents can be
quite large.
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From angles to cosines

The following two notions are equivalent.

Rank documents according to the angle between query and
document in decreasing order
Rank documents according to cosine(query,document) in
increasing order

Cosine is a monotonically decreasing function of the angle for
the interval [0◦, 180◦]
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Cosine
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What about angles > 180◦?
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Length normalization

How do we compute the cosine?

A vector can be (length-) normalized by dividing each of its
components by its length � here we use the L2 norm:

||x ||2 =
√∑

i x
2

i

This maps vectors onto the unit sphere . . .

. . . since after normalization: ||x ||2 =
√∑

i x
2

i = 1.0

As a result, longer documents and shorter documents have
weights of the same order of magnitude.

E�ect on the two documents d and d ′ (d appended to itself)
from earlier slide: they have identical vectors after
length-normalization.
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Term frequency tf-idf weighting The vector space

Cosine similarity between query and document

cos(~q, ~d) = sim(~q, ~d) =
~q · ~d
|~q||~d |

=

∑|V |
i=1

qidi√∑|V |
i=1

q2i

√∑|V |
i=1

d2i

qi is the tf-idf weight of term i in the query.

di is the tf-idf weight of term i in the document.

|~q| and |~d | are the lengths of ~q and ~d .

This is the cosine similarity of ~q and ~d . . . . . . or, equivalently,
the cosine of the angle between ~q and ~d .
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Cosine for normalized vectors

For normalized vectors, the cosine is equivalent to the dot
product or scalar product.

cos(~q, ~d) = ~q · ~d =
∑

i qi · di (if ~q and ~d are
length-normalized).
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Cosine similarity illustrated
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Cosine: Example

How similar are
the novels? SaS:
Sense and
Sensibility, PaP:
Pride and
Prejudice, and
WH: Wuthering
Heights?

term frequencies (counts)

term SaS PaP WH

a�ection 115 58 20
jealous 10 7 11
gossip 2 0 6
wuthering 0 0 38
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Cosine: Example

term frequencies (counts)

term SaS PaP WH

a�ection 115 58 20
jealous 10 7 11
gossip 2 0 6
wuthering 0 0 38

log frequency weighting

term SaS PaP WH

a�ection 3.06 2.76 2.30
jealous 2.0 1.85 2.04
gossip 1.30 0 1.78
wuthering 0 0 2.58

(To simplify this example, we don't do idf weighting.)
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Cosine: Example

log frequency weighting

term SaS PaP WH

a�ection 3.06 2.76 2.30
jealous 2.0 1.85 2.04
gossip 1.30 0 1.78
wuthering 0 0 2.58

log frequency weighting
& cosine normalization

term SaS PaP WH

a�ection 0.789 0.832 0.524
jealous 0.515 0.555 0.465
gossip 0.335 0.0 0.405
wuthering 0.0 0.0 0.588

cos(SaS,PaP) ≈
0.789 ∗ 0.832 + 0.515 ∗ 0.555 + 0.335 ∗ 0.0 + 0.0 ∗ 0.0 ≈ 0.94.
cos(SaS,WH) ≈ 0.79
cos(PaP,WH) ≈ 0.69
Why do we have cos(SaS,PaP) > cos(SAS,WH)?
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Computing the cosine score
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Components of tf-idf weighting

Best known combination of weighting options

Default: no weighting
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Term frequency tf-idf weighting The vector space

tf-idf example

We often use di�erent weightings for queries and documents.

Notation: qqq.ddd

Example: ltn.lnc

query: logarithmic tf, idf, no normalization

document: logarithmic tf, no df weighting, cosine
normalization

Isn't it bad to not idf-weight the document?

Example query: �best car insurance�

Example document: �car insurance auto insurance�
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tf-idf example: ltn.lnc

Query: �best car insurance�. Document: �car insurance auto insurance�.

word query document product
tf-raw tf-wght df idf weight tf-raw tf-wght weight n'lized

auto

0 0 5000 2.3 0 1 1 1 0.52 0

best

1 1 50000 1.3 1.3 0 0 0 0 0

car

1 1 10000 2.0 2.0 1 1 1 0.52 1.04

insurance

1 1 1000 3.0 3.0 2 1.3 1.3 0.68 2.04

Key to columns: tf-raw: raw (unweighted) term frequency, tf-wght: logarithmically weighted
term frequency, df: document frequency, idf: inverse document frequency, weight: the �nal
weight of the term in the query or document, n'lized: document weights after cosine
normalization, product: the product of �nal query weight and �nal document weight

√
12 + 02 + 12 + 1.32 ≈ 1.92

1/1.92 ≈ 0.52
1.3/1.92 ≈ 0.68

Final similarity score between query and document:
∑

i wqi · wdi = 0 + 0 + 1.04 + 2.04 = 3.08

Questions?
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Term frequency tf-idf weighting The vector space

Summary: Ranked retrieval in the vector space model

Represent the query as a weighted tf-idf vector

Represent each document as a weighted tf-idf vector

Compute the cosine similarity between the query vector and
each document vector

Rank documents with respect to the query

Return the top K (e.g., K = 10) to the user
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Term frequency tf-idf weighting The vector space

Resources

Chapters 6 and 7 of IIR

Resources at http://ifnlp.org/ir

Vector space for dummies

Exploring the similarity space (Mo�at and Zobel, 2005)

Okapi BM25 (a state-of-the-art weighting method, 11.4.3 of
IIR)
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