
Inverted index Processing Boolean queries

Boolean Retrieval1

September, 2009

1Vorlage: Folien von M. Schütze zu [1]

1 von 27 Boolean Retrieval

Inverted index Processing Boolean queries

Boolean Retrieval

Fragen sind Boolesche Ausdrücke, z.B.: Caesar AND

Brutus

Die Suchmaschine gibt alle Dokumente zurück, die der
Anfrage entsprechen.

Does Google use the Boolean model?

2 von 27 Boolean Retrieval

Inverted index Processing Boolean queries

Outline

1 Inverted index

2 Processing Boolean queries

3 von 27 Boolean Retrieval

Inverted index Processing Boolean queries

Unstructured data in 1650

Which plays of Shakespeare contain the words Brutus AND

Caesar, but NOT Calpurnia?

One could grep all of Shakespeare's plays for Brutus and
Caesar, then strip out lines containing Calpurnia.

Why is grep not the solution?

Slow (for large collections)
� NOT Calpurnia� is non-trivial
Other operations (e.g., �nd the word Romans near
countryman) not feasible
Ranked retrieval (best documents to return) � focus of later
lectures, but not this one

4 von 27 Boolean Retrieval

Inverted index Processing Boolean queries

Unstructured data in 1650

Which plays of Shakespeare contain the words Brutus AND

Caesar, but NOT Calpurnia?

One could grep all of Shakespeare's plays for Brutus and
Caesar, then strip out lines containing Calpurnia.

Why is grep not the solution?

Slow (for large collections)
� NOT Calpurnia� is non-trivial
Other operations (e.g., �nd the word Romans near
countryman) not feasible
Ranked retrieval (best documents to return) � focus of later
lectures, but not this one

4 von 27 Boolean Retrieval

Inverted index Processing Boolean queries

Term-document incidence matrix

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0
. . .
Entry is 1 if term occurs. Example: Calpurnia occurs in Julius Caesar.
Entry is 0 if term doesn't occur. Example: Calpurnia doesn't occur in The
tempest.

5 von 27 Boolean Retrieval

Inverted index Processing Boolean queries

Term-document incidence matrix

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0
. . .
Entry is 1 if term occurs. Example: Calpurnia occurs in Julius Caesar.
Entry is 0 if term doesn't occur. Example: Calpurnia doesn't occur in The
tempest.

5 von 27 Boolean Retrieval

Inverted index Processing Boolean queries

Term-document incidence matrix

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0
. . .
Entry is 1 if term occurs. Example: Calpurnia occurs in Julius Caesar.
Entry is 0 if term doesn't occur. Example: Calpurnia doesn't occur in The
tempest.

5 von 27 Boolean Retrieval

Inverted index Processing Boolean queries

Incidence vectors

So we have a 0/1 vector for each term.

To answer the query Brutus AND Caesar AND NOT
Calpurnia:

Take the vectors for Brutus, Caesar, and Calpurnia

Complement the vector of Calpurnia

Do a (bitwise) AND on the three vectors
110100 AND 110111 AND 101111 = 100100

6 von 27 Boolean Retrieval

Inverted index Processing Boolean queries

Incidence vectors

So we have a 0/1 vector for each term.

To answer the query Brutus AND Caesar AND NOT
Calpurnia:

Take the vectors for Brutus, Caesar, and Calpurnia

Complement the vector of Calpurnia

Do a (bitwise) AND on the three vectors
110100 AND 110111 AND 101111 = 100100

6 von 27 Boolean Retrieval

Inverted index Processing Boolean queries

0/1 vector for Brutus

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0
. . .

7 von 27 Boolean Retrieval

Inverted index Processing Boolean queries

0/1 vector for Brutus

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0
. . .

7 von 27 Boolean Retrieval

Inverted index Processing Boolean queries

0/1 vector for Brutus

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0
. . .

7 von 27 Boolean Retrieval

Inverted index Processing Boolean queries

Answers to query

Anthony and Cleopatra, Act III, Scene ii
Agrippa [Aside to Domitius Enobarbus]: Why, Enobarbus,

When Antony found Julius Caesar dead,
He cried almost to roaring; and he wept
When at Philippi he found Brutus slain.

Hamlet, Act III, Scene ii
Lord Polonius: I did enact Julius Caesar: I was killed i' the

Capitol; Brutus killed me.

8 von 27 Boolean Retrieval

Inverted index Processing Boolean queries

Bigger collections

Consider N = 106 documents, each with about 1000 tokens

On average 6 bytes per token, including spaces and
punctuation ⇒ size of document collection is about 6 GB

Assume there are M = 500,000 distinct terms in the collection

(Notice that we are making a term/token distinction.)

9 von 27 Boolean Retrieval

Inverted index Processing Boolean queries

Bigger collections

Consider N = 106 documents, each with about 1000 tokens

On average 6 bytes per token, including spaces and
punctuation ⇒ size of document collection is about 6 GB

Assume there are M = 500,000 distinct terms in the collection

(Notice that we are making a term/token distinction.)

9 von 27 Boolean Retrieval

Inverted index Processing Boolean queries

Bigger collections

Consider N = 106 documents, each with about 1000 tokens

On average 6 bytes per token, including spaces and
punctuation ⇒ size of document collection is about 6 GB

Assume there are M = 500,000 distinct terms in the collection

(Notice that we are making a term/token distinction.)

9 von 27 Boolean Retrieval

Inverted index Processing Boolean queries

Bigger collections

Consider N = 106 documents, each with about 1000 tokens

On average 6 bytes per token, including spaces and
punctuation ⇒ size of document collection is about 6 GB

Assume there are M = 500,000 distinct terms in the collection

(Notice that we are making a term/token distinction.)

9 von 27 Boolean Retrieval

Inverted index Processing Boolean queries

Can't build the incidence matrix

M = 500,000× 106 = half a trillion 0s and 1s.

But the matrix has no more than one billion 1s.

Matrix is extremely sparse.

What is a better representations?

We only record the 1s.

10 von 27 Boolean Retrieval

Inverted index Processing Boolean queries

Inverted Index

For each term t, we store a list of all documents that contain t.

Brutus −→ 1 2 4 11 31 45 173 174

Caesar −→ 1 2 4 5 6 16 57 132 . . .

Calpurnia −→ 2 31 54 101

...︸ ︷︷ ︸ ︸ ︷︷ ︸
dictionary postings

11 von 27 Boolean Retrieval

Inverted index Processing Boolean queries

Inverted Index

For each term t, we store a list of all documents that contain t.

Brutus −→ 1 2 4 11 31 45 173 174

Caesar −→ 1 2 4 5 6 16 57 132 . . .

Calpurnia −→ 2 31 54 101

...︸ ︷︷ ︸ ︸ ︷︷ ︸
dictionary postings

11 von 27 Boolean Retrieval

Inverted index Processing Boolean queries

Inverted Index

For each term t, we store a list of all documents that contain t.

Brutus −→ 1 2 4 11 31 45 173 174

Caesar −→ 1 2 4 5 6 16 57 132 . . .

Calpurnia −→ 2 31 54 101

...︸ ︷︷ ︸ ︸ ︷︷ ︸
dictionary postings

11 von 27 Boolean Retrieval

Inverted index Processing Boolean queries

Inverted index construction

1 Collect the documents to be indexed:

Friends, Romans, countrymen. So let it be with Caesar
. . .

2 Tokenize the text, turning each document into a list of tokens:

Friends Romans countrymen So . . .

3 Do linguistic preprocessing, producing a list of normalized
tokens, which are the indexing terms: friend roman
countryman so . . .

4 Index the documents that each term occurs in by creating an
inverted index, consisting of a dictionary and postings.

12 von 27 Boolean Retrieval

Inverted index Processing Boolean queries

Tokenization and preprocessing
Doc 1. I did enact Julius Caesar: I
was killed i' the Capitol; Brutus killed
me.
Doc 2. So let it be with Caesar.
The noble Brutus hath told you Cae-
sar was ambitious:

=⇒
Doc 1. I did enact julius caesar I was
killed i' the capitol brutus killed me
Doc 2. so let it be with caesar the
noble brutus hath told you caesar was
ambitious

13 von 27 Boolean Retrieval

Inverted index Processing Boolean queries

Generate postings

Doc 1. I did enact julius caesar I was
killed i' the capitol brutus killed me
Doc 2. so let it be with caesar the
noble brutus hath told you caesar was
ambitious

=⇒

term docID

I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

14 von 27 Boolean Retrieval

Inverted index Processing Boolean queries

Sort postings
term docID

I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

=⇒

term docID

ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i' 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

15 von 27 Boolean Retrieval

Inverted index Processing Boolean queries

Create postings lists, determine document frequency
term docID

ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i' 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

=⇒

term doc. freq. → postings lists

ambitious 1 → 2

be 1 → 2

brutus 2 → 1 → 2

capitol 1 → 1

caesar 2 → 1 → 2

did 1 → 1

enact 1 → 1

hath 1 → 2

I 1 → 1

i' 1 → 1

it 1 → 2

julius 1 → 1

killed 1 → 1

let 1 → 2

me 1 → 1

noble 1 → 2

so 1 → 2

the 2 → 1 → 2

told 1 → 2

you 1 → 2

was 2 → 1 → 2

with 1 → 2

16 von 27 Boolean Retrieval

Inverted index Processing Boolean queries

Split the result into dictionary and postings �le

Brutus −→ 1 2 4 11 31 45 173 174

Caesar −→ 1 2 4 5 6 16 57 132 . . .

Calpurnia −→ 2 31 54 101

...︸ ︷︷ ︸ ︸ ︷︷ ︸
dictionary postings �le

17 von 27 Boolean Retrieval

Inverted index Processing Boolean queries

Outline

1 Inverted index

2 Processing Boolean queries

18 von 27 Boolean Retrieval

Inverted index Processing Boolean queries

Simple conjunctive query (two terms)

Consider the query: Brutus AND Calpurnia

To �nd all matching documents using inverted index:

1 Locate Brutus in the dictionary
2 Retrieve its postings list from the postings �le
3 Locate Calpurnia in the dictionary
4 Retrieve its postings list from the postings �le
5 Intersect the two postings lists
6 Return intersection to user

19 von 27 Boolean Retrieval

Inverted index Processing Boolean queries

Simple conjunctive query (two terms)

Consider the query: Brutus AND Calpurnia

To �nd all matching documents using inverted index:

1 Locate Brutus in the dictionary

2 Retrieve its postings list from the postings �le
3 Locate Calpurnia in the dictionary
4 Retrieve its postings list from the postings �le
5 Intersect the two postings lists
6 Return intersection to user

19 von 27 Boolean Retrieval

Inverted index Processing Boolean queries

Simple conjunctive query (two terms)

Consider the query: Brutus AND Calpurnia

To �nd all matching documents using inverted index:

1 Locate Brutus in the dictionary
2 Retrieve its postings list from the postings �le

3 Locate Calpurnia in the dictionary
4 Retrieve its postings list from the postings �le
5 Intersect the two postings lists
6 Return intersection to user

19 von 27 Boolean Retrieval

Inverted index Processing Boolean queries

Simple conjunctive query (two terms)

Consider the query: Brutus AND Calpurnia

To �nd all matching documents using inverted index:

1 Locate Brutus in the dictionary
2 Retrieve its postings list from the postings �le
3 Locate Calpurnia in the dictionary

4 Retrieve its postings list from the postings �le
5 Intersect the two postings lists
6 Return intersection to user

19 von 27 Boolean Retrieval

Inverted index Processing Boolean queries

Simple conjunctive query (two terms)

Consider the query: Brutus AND Calpurnia

To �nd all matching documents using inverted index:

1 Locate Brutus in the dictionary
2 Retrieve its postings list from the postings �le
3 Locate Calpurnia in the dictionary
4 Retrieve its postings list from the postings �le

5 Intersect the two postings lists
6 Return intersection to user

19 von 27 Boolean Retrieval

Inverted index Processing Boolean queries

Simple conjunctive query (two terms)

Consider the query: Brutus AND Calpurnia

To �nd all matching documents using inverted index:

1 Locate Brutus in the dictionary
2 Retrieve its postings list from the postings �le
3 Locate Calpurnia in the dictionary
4 Retrieve its postings list from the postings �le
5 Intersect the two postings lists

6 Return intersection to user

19 von 27 Boolean Retrieval

Inverted index Processing Boolean queries

Simple conjunctive query (two terms)

Consider the query: Brutus AND Calpurnia

To �nd all matching documents using inverted index:

1 Locate Brutus in the dictionary
2 Retrieve its postings list from the postings �le
3 Locate Calpurnia in the dictionary
4 Retrieve its postings list from the postings �le
5 Intersect the two postings lists
6 Return intersection to user

19 von 27 Boolean Retrieval

Inverted index Processing Boolean queries

Intersecting two postings lists

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Intersection =⇒

2 → 31

This is linear in the length of the postings lists.

This only works if postings lists are sorted.

20 von 27 Boolean Retrieval

Inverted index Processing Boolean queries

Intersecting two postings lists

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Intersection =⇒

2 → 31

This is linear in the length of the postings lists.

This only works if postings lists are sorted.

20 von 27 Boolean Retrieval

Inverted index Processing Boolean queries

Intersecting two postings lists

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Intersection =⇒

2 → 31

This is linear in the length of the postings lists.

This only works if postings lists are sorted.

20 von 27 Boolean Retrieval

Inverted index Processing Boolean queries

Intersecting two postings lists

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Intersection =⇒ 2

→ 31

This is linear in the length of the postings lists.

This only works if postings lists are sorted.

20 von 27 Boolean Retrieval

Inverted index Processing Boolean queries

Intersecting two postings lists

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Intersection =⇒ 2

→ 31

This is linear in the length of the postings lists.

This only works if postings lists are sorted.

20 von 27 Boolean Retrieval

Inverted index Processing Boolean queries

Intersecting two postings lists

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Intersection =⇒ 2

→ 31

This is linear in the length of the postings lists.

This only works if postings lists are sorted.

20 von 27 Boolean Retrieval

Inverted index Processing Boolean queries

Intersecting two postings lists

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Intersection =⇒ 2

→ 31

This is linear in the length of the postings lists.

This only works if postings lists are sorted.

20 von 27 Boolean Retrieval

Inverted index Processing Boolean queries

Intersecting two postings lists

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Intersection =⇒ 2 → 31

This is linear in the length of the postings lists.

This only works if postings lists are sorted.

20 von 27 Boolean Retrieval

Inverted index Processing Boolean queries

Intersecting two postings lists

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Intersection =⇒ 2 → 31

This is linear in the length of the postings lists.

This only works if postings lists are sorted.

20 von 27 Boolean Retrieval

Inverted index Processing Boolean queries

Intersecting two postings lists

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Intersection =⇒ 2 → 31

This is linear in the length of the postings lists.

This only works if postings lists are sorted.

20 von 27 Boolean Retrieval

Inverted index Processing Boolean queries

Intersecting two postings lists

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Intersection =⇒ 2 → 31

This is linear in the length of the postings lists.

This only works if postings lists are sorted.

20 von 27 Boolean Retrieval

Inverted index Processing Boolean queries

Intersecting two postings lists

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Intersection =⇒ 2 → 31

This is linear in the length of the postings lists.

This only works if postings lists are sorted.

20 von 27 Boolean Retrieval

Inverted index Processing Boolean queries

Intersecting two postings lists

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Intersection =⇒ 2 → 31

This is linear in the length of the postings lists.

This only works if postings lists are sorted.

20 von 27 Boolean Retrieval

Inverted index Processing Boolean queries

Intersecting two postings lists

21 von 27 Boolean Retrieval

Inverted index Processing Boolean queries

Boolean queries

The Boolean retrieval model can answer any query that is a
Boolean expression.

Boolean queries are queries that use AND , OR and NOT

to join query terms.
Views each document as a set of terms.
Is precise: Document matches condition or not.

Primary commercial retrieval tool for 3 decades

Many professional searchers (e.g., lawyers) still like Boolean
queries

You know exactly what you are getting.

Many search systems you use are also Boolean: email, intranet
etc.

22 von 27 Boolean Retrieval

Inverted index Processing Boolean queries

Query optimization

What is the best order for query processing?

Consider a query that is an AND of n terms, n > 2

For each of the terms, get its postings list, then AND them
together

Example query: Brutus AND Calpurnia AND Caesar

23 von 27 Boolean Retrieval

Inverted index Processing Boolean queries

Query optimization

Example query: Brutus AND Calpurnia AND Caesar

Simple and e�ective optimization: Process in order of
increasing frequency

Start with the shortest postings list, then keep cutting further

In this example, �rst Caesar, then Calpurnia, then Brutus

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Caesar −→ 5 → 31

24 von 27 Boolean Retrieval

Inverted index Processing Boolean queries

Query optimization

Example query: Brutus AND Calpurnia AND Caesar

Simple and e�ective optimization: Process in order of
increasing frequency

Start with the shortest postings list, then keep cutting further

In this example, �rst Caesar, then Calpurnia, then Brutus

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Caesar −→ 5 → 31

24 von 27 Boolean Retrieval

Inverted index Processing Boolean queries

Optimized intersection algorithm for conjunctive queries

25 von 27 Boolean Retrieval

Inverted index Processing Boolean queries

More general optimization

Example query: (madding OR crowd) AND (ignoble
OR strife)

Get frequencies for all terms

Estimate the size of each OR by the sum of its frequencies
(conservative)

Process in increasing order of OR sizes

26 von 27 Boolean Retrieval

Inverted index Processing Boolean queries

Exercise

Recommend a query processing order for: (tangerine OR trees)
AND (marmalade OR skies) AND (kaleidoscope OR

eyes)

27 von 27 Boolean Retrieval

Inverted index Processing Boolean queries

H. S. Christopher Manning, P. Raghavan.
Introduction to Information Retrieval.
Cambridge, 2008.

27 von 27 Boolean Retrieval

	Inverted index
	Processing Boolean queries

