Boolean Retrieval

September, 2009

'Vorlage: Folien von M. Schiitze zu [1]

Boolean Retrieval

m Fragen sind Boolesche Ausdriicke, z.B.: Caesar AND
Brutus

m Die Suchmaschine gibt alle Dokumente zuriick, die der
Anfrage entsprechen.

Does Google use the Boolean model?

QOutline

Inverted index

Unstructured data in 1650

m Which plays of Shakespeare contain the words Brutus AND
Caesar, but NOT Calpurnia?

m One could grep all of Shakespeare’s plays for Brutus and
Caesar, then strip out lines containing Calpurnia.
m Why is grep not the solution?

Unstructured data in 1650

m Which plays of Shakespeare contain the words Brutus AND
Caesar, but NOT Calpurnia?

m One could grep all of Shakespeare’s plays for Brutus and
Caesar, then strip out lines containing Calpurnia.
m Why is grep not the solution?
m Slow (for large collections)
m “ NOT Calpurnia” is non-trivial
m Other operations (e.g., find the word Romans near
countryman) not feasible

m Ranked retrieval (best documents to return) — focus of later
lectures, but not this one

Term-document incidence matrix

Anthony Julius The Hamlet Othello Macbeth

and Caesar Tempest
Cleopatra
Anthony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0

Entry is 1 if term occurs. Example: Calpurnia occurs in Julius Caesar.
Entry is O if term doesn’t occur. Example: Calpurnia doesn’t occur in The
tempest.

Term-document incidence matrix

Anthony Julius The Hamlet Othello Macbeth

and Caesar Tempest
Cleopatra
Anthony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0

Entry is 1 if term occurs. Example: Calpurnia occurs in Julius Caesar.
Entry is O if term doesn’t occur. Example: Calpurnia doesn’t occur in The
tempest.

Term-document incidence matrix

Anthony Julius The Hamlet Othello Macbeth

and Caesar Tempest
Cleopatra
Anthony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0

Entry is 1 if term occurs. Example: Calpurnia occurs in Julius Caesar.
Entry is O if term doesn’t occur. Example: Calpurnia doesn’t occur in The
tempest.

Incidence vectors

m So we have a 0/1 vector for each term.

m To answer the query Brutus AND Caesar AND NOT
Calpurnia:

Incidence vectors

m So we have a 0/1 vector for each term.

m To answer the query Brutus AND Caesar AND NOT
Calpurnia:
m Take the vectors for Brutus, Caesar, and Calpurnia
Complement the vector of Calpurnia
Do a (bitwise) AND on the three vectors
110100 AND 110111 AND 101111 = 100100

0/1 vector for Brutus

Anthony Julius The Hamlet Othello Macbeth

and Caesar Tempest
Cleopatra
Anthony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0

0/1 vector for Brutus

Anthony Julius The Hamlet Othello Macbeth

and Caesar Tempest
Cleopatra
Anthony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0

0/1 vector for Brutus

Anthony Julius The Hamlet Othello Macbeth

and Caesar Tempest
Cleopatra
Anthony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0

Answers to query

Anthony and Cleopatra, Act Ill, Scene i

Agrippa [Aside to Domitius Enobarbus]: ~ Why, Enobarbus,
When Antony found Julius Caesar dead,
He cried almost to roaring; and he wept
When at Philippi he found Brutus slain.

Hamlet, Act Ill, Scene ii
Lord Polonius: | did enact Julius Caesar: | was killed i’ the
Capitol; Brutus killed me.

Bigger collections

m Consider N = 10° documents, each with about 1000 tokens

Bigger collections

m Consider N = 10° documents, each with about 1000 tokens

m On average 6 bytes per token, including spaces and
punctuation = size of document collection is about 6 GB

Bigger collections

m Consider N = 10° documents, each with about 1000 tokens

m On average 6 bytes per token, including spaces and
punctuation = size of document collection is about 6 GB

m Assume there are M = 500,000 distinct terms in the collection

Bigger collections

Consider N = 10° documents, each with about 1000 tokens

On average 6 bytes per token, including spaces and
punctuation = size of document collection is about 6 GB

Assume there are M = 500,000 distinct terms in the collection

(Notice that we are making a term/token distinction.)

Can't build the incidence matrix

m M = 500,000 x 10° = half a trillion 0s and 1s.
m But the matrix has no more than one billion 1s.
m Matrix is extremely sparse.
m What is a better representations?
m We only record the 1s.

10 von 27

Inverted Index

For each term t, we store a list of all documents that contain t.

| Brutus | — [1] 2] 4] 11[31]45]|173 [174]

[Cacsar | — [1] 2] 4] 5] 6]16] 57[132]... |

’ Calpurnia ‘ — ’ 2 ‘ 31 ‘ 54 ‘ 101‘

e ~
dictionary postings

11 von 27

Inverted Index

For each term t, we store a list of all documents that contain t.

| Brutus | — [1] 2] 4] 11[31]45]|173 [174]

[Cacsar | — [1] 2] 4] 5] 6]16] 57[132]... |

’ Calpurnia ‘ — ’ 2 ‘ 31 ‘ 54 ‘ 101‘

G ~
dictionary postings

11 von 27

Inverted Index

For each term t, we store a list of all documents that contain t.

| Brutus | — [1] 2] 4] 11[31]45]|173 [174]

[Cacsar | — [1] 2] 4] 5] 6]16] 57[132]... |

’ Calpurnia ‘ — ’ 2 ‘ 31 ‘ 54 ‘ 101‘

e ~
dictionary postings

11 von 27

Inverted index construction

Collect the documents to be indexed:
’ Friends, Romans, countrymen. H So let it be with Caesar‘

Tokenize the text, turning each document into a list of tokens:

’ Friends H Romans ‘ e

Do linguistic preprocessing, producing a list of normalized
tokens, which are the indexing terms: | friend |[roman

Index the documents that each term occurs in by creating an
inverted index, consisting of a dictionary and postings.

12 von 27

Tokenization and preprocessing

Doc 1. | did enact Julius Caesar: |
was killed i’ the Capitol; Brutus killed
me.

Doc 2. So let it be with Caesar.
The noble Brutus hath told you Cae-
sar was ambitious:

Doc 1. | did enact julius caesar | was
killed i" the capitol brutus killed me
Doc 2. so let it be with caesar the
noble brutus hath told you caesar was
ambitious

Generate postings

term doclD
|

did

enact

julius

caesar

1
was
killed
"

the
capitol
brutus

Doc 1. | did enact julius caesar | was lled

1

1

1

1

1

1

1

1

1

1

1

. o . 1
killed i" the capitol brutus killed me
Doc 2. so let it be with caesar the == "¢ !
s0 2

noble brutus hath told you caesar was et >
ambitious it 5
be 2

with 2

caesar 2

the 2

noble 2

brutus 2

hath 2

told 2

you 2

caesar 2

was 2

ambitious 2

term docID
|
did

1

1
enact 1
Julius 1
caesar 1
| 1
was 1
killed 1
i 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

5 von

term doclD
ambitious
be

brutus
brutus
capitol
caesar
caesar
caesar
did

enact
hath

2
2
1
2
1
1
2
2
1
1
1
1
1
1
it 2
1
1
1
2
1
2
2
1
2
2
2
1
2
2

term doclD
ambitious

be term doc. freq.

ambitious

be

brutus

°
°
@
o
S

(]
¢
7
a
@

brutus
brutus
capitol
caesar

-2
-2

caesar
caesar
did

Ll

enact
hath

Ll el

-2

1

!

~[]

NENNANNEANERNRENEEREREREEE

1

2
2
1
2
1
1
2
2
1
1
1
1
1
1
it 2
1
1
1
2
1
2
2
1
2
2
2
1
2
2

Split the result into dictionary and postings file

| Brutus | — [1] 2] 4] 11[31]45]|173 [174]

[Cacsar | — [1] 2] 4] 5] 6[16] 57[132]... |

’ Calpurnia ‘ — ’ 2 ‘ 31 ‘ 54 ‘ 101‘

- - h
dictionary postings file

17 von 27

QOutline

Processing Boolean queries

18 von 27

Simple conjunctive query (two terms)

m Consider the query: Brutus AND Calpurnia
m To find all matching documents using inverted index:

19 von 27

Simple conjunctive query (two terms)

m Consider the query: Brutus AND Calpurnia
m To find all matching documents using inverted index:
Locate Brutus in the dictionary

19 von 27

Simple conjunctive query (two terms)

m Consider the query: Brutus AND Calpurnia
m To find all matching documents using inverted index:

Locate Brutus in the dictionary
Retrieve its postings list from the postings file

19 von 27

Simple conjunctive query (two terms)

m Consider the query: Brutus AND Calpurnia
m To find all matching documents using inverted index:

Locate Brutus in the dictionary
Retrieve its postings list from the postings file
Locate Calpurnia in the dictionary

19 von 27

Simple conjunctive query (two terms)

m Consider the query: Brutus AND Calpurnia
m To find all matching documents using inverted index:

Locate Brutus in the dictionary

Retrieve its postings list from the postings file
Locate Calpurnia in the dictionary

B Retrieve its postings list from the postings file

19 von 27

Simple conjunctive query (two terms)

m Consider the query: Brutus AND Calpurnia

m To find all matching documents using inverted index:
Locate Brutus in the dictionary
Retrieve its postings list from the postings file
Locate Calpurnia in the dictionary
B Retrieve its postings list from the postings file
Intersect the two postings lists

19 von 27

Simple conjunctive query (two terms)

m Consider the query: Brutus AND Calpurnia
m To find all matching documents using inverted index:

Locate Brutus in the dictionary

Retrieve its postings list from the postings file
Locate Calpurnia in the dictionary

B Retrieve its postings list from the postings file
Intersect the two postings lists

@ Return intersection to user

19 von 27

Intersecting two postings lists

Brutus — —>—>—>—>—>\ 45 \—>\ 173 \—>\ 174\
Calpurnia — —>—>—>

Intersection —

20 von 27

Intersecting two postings lists

Brutus — —>—>—>—>—>\ 45 \—>\ 173 \—>\ 174\
Calpurnia — —>—>—>

Intersection —

20 von 27

Intersecting two postings lists

Brutus — —>—>—>—>—>\ 45 \—>\ 173 \—>\ 174\
Calpurnia — —>—>—>

Intersection —

20 von 27

Intersecting two postings lists

Brutus — —>—>—>—>—>\ 45 \—>\ 173 \—>\ 174\
Calpurnia — —>—>—>

Intersection —

20 von 27

Intersecting two postings lists

Brutus — —>—>—>—>—>\ 45 \—>\ 173 \—>\ 174\
Calpurnia — —>—>—>

Intersection —

20 von 27

Intersecting two postings lists

Brutus — —>—>—>—>—>\ 45 \—>\ 173 \—>\ 174\
Calpurnia — —>—>—>

Intersection —

20 von 27

Intersecting two postings lists

Brutus — —>—>—>—>—>\ 45 \—>\ 173 \—>\ 174\
Calpurnia — —>—>—>

Intersection —

20 von 27

Intersecting two postings lists

Brutus — —>—>—>—>—>\ 45 \—>\ 173 \—>\ 174\
Calpurnia — —>—>—>

Intersection — —>

20 von 27

Intersecting two postings lists

Brutus — —>—>—>—>—>’ 45 ‘—>\ 173 \—>\ 174\
Calpurnia — —>—>—>

Intersection — —>

20 von 27

Intersecting two postings lists

Brutus — —>—>—>—>—>\ 45 \—>’ 173 ‘—>\ 174\
Calpurnia — —>—>—>

Intersection — —>

20 von 27

Intersecting two postings lists

Brutus — —>—>—>—>—>\ 45 \—>’ 173 ‘—>\ 174\
Calpurnia — —>—>—>

Intersection — —>

20 von 27

Intersecting two postings lists

Brutus — —>—>—>—>—>\ 45 \—>\ 173 \—>\ 174\
Calpurnia — —>—>—>

Intersection — —>

20 von 27

Intersecting two postings lists

Brutus — —>—>—>—>—>\ 45 \—>\ 173 \—>\ 174\
Calpurnia — —>—>—>

Intersection — —>

m This is linear in the length of the postings lists.

m This only works if postings lists are sorted.

20 von 27

Intersecting two postings lists

INTERSECT(p1, p2)
answer « ()
while p; # NIL and py # NIL
do if docID(p1) = doclD(pz)
then ADD(answer, docID(p1))

p1 < next(py)

p2 < next(p2)
else if docID(p1) < doclD(p2)

then p; < next(py)
else p, < next(ps)
return answer

O 0 N OBk W~

[y
o

21 von 27

Boolean queries

m The Boolean retrieval model can answer any query that is a
Boolean expression.
m Boolean queries are queries that use AND , OR and NOT
to join query terms.
m Views each document as a set of terms.
m Is precise: Document matches condition or not.

Primary commercial retrieval tool for 3 decades

Many professional searchers (e.g., lawyers) still like Boolean
queries
m You know exactly what you are getting.

Many search systems you use are also Boolean: email, intranet
etc.

22 von 27

Query optimization

m What is the best order for query processing?
m Consider a query that is an AND of n terms, n > 2

m For each of the terms, get its postings list, then AND them
together

m Example query: Brutus AND Calpurnia AND Caesar

23 von 27

Query optimization

m Example query: Brutus AND Calpurnia AND Caesar

Bruwws — [1]-{2}-{4]-{11{31]-[45 {173 |+{174]

Calpurnia — —>\ 31 \—>\ 54 \—>\ 101 \

Caesar — —>

24 von 27

Query optimization

m Example query: Brutus AND Calpurnia AND Caesar

m Simple and effective optimization: Process in order of
increasing frequency

m Start with the shortest postings list, then keep cutting further

m In this example, first Caesar, then Calpurnia, then Brutus

Bruwws — [1]-{2}-{4]-{11{31]-[45 {173 |+{174]

Calpurnia — —>\ 31 \—>\ 54 \—>\ 101 \

Caesar — —>

24 von 27

Optimized intersection algorithm for conjunctive queries

INTERSECT(p1, p2)
answer « ()
while p; # NIL and py # NIL
do if docID(p1) = doclD(pz)
then ADD(answer, docID(p1))

p1 < next(py)

p2 < next(p2)
else if docID(p1) < doclD(p2)

then p; — next(p;)
else p> «— next(py)
return answer

O 0 N OBk W~

[y
o

25 von 27

More general optimization

m Example query: (madding OR crowd) AND (ignoble
OR strife)

m Get frequencies for all terms

m Estimate the size of each OR by the sum of its frequencies
(conservative)

m Process in increasing order of OR sizes

26 von 27

Exercise

Recommend a query processing order for: (tangerine OR trees)
AND (marmalade OR skies) AND (kaleidoscope OR

eyes)

27 von 27

@ H.S. Christopher Manning, P. Raghavan.
Introduction to Information Retrieval.
Cambridge, 2008.

27 von 27

	Inverted index
	Processing Boolean queries

