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Supervised Learning

training data: D = {(~x (1), ~y (1)), (~x (2), ~y (2)), . . . , (~x (m), ~y (m))}

m training data with n features: 1 ≤ j ≤ n

Input-Features ~x (i) of the i-th training example

~x (i) = x
(i)
1
, x

(i)
2
, . . . , x

(i)
n

i-th target values of the i-th example ~y (i)

x
(i)
j : values of the feature j of the i-th training example

Goal: prediction of ~y for a new ~x .
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Hypothesis (prediction function)

Parametric Model:

~h~Θ(~x) = ~h(Θ,~x)

with

Parameters Θ
~h is a prediction of the ~y for given ~x

The parameters have to be adapt by training to make �good�

predictions.
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Loss

Discrepancy between the desired output ~y (i) and the output of the

system ~hΘ(~y (i)) for �xed Θ is measured by a loss function:

loss(~Θ) = loss(hΘ(~x (i)), ~y (i))

The total cost of all training examples is given by the mean of the

losses:

J(Θ) =
1

m

m∑
i=1

loss(~hΘ(~x (i)), ~y (i))

Usually the loss and the cost (also called error) is considered as a

function of the parameters Θ
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Example for Losses

for regression: squared error loss

for classi�cation: cross entropy loss
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Problem

Hypothesis: hΘ(~x)

k Parameter: Θ

Minimization of the cost function J(Θ)
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Gradient Descent for minimization of the cost function J

Repeat until convergence is reached:

Θj ← Θj − α
∂

∂Θj

J(Θ)

α scalar (or more complex (e.g. approx of inverse Hessian))

Note for implementation: simultaneous update for all Θj
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Stocastic Gradient Descent

Θj ← Θj − α
∂

∂Θj

Jpartial(Θ)

The cost is computed only for an example or some examples

(mini-batch), e.g. randomly selected.
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Vector representation of gradient descent

With the de�nition of the gradient:

grad(J(Θ)) = ∇J(Θ) =


∂J(Θ)
∂Θ0
∂J(Θ)
∂Θ1

. . .
∂J(Θ)
∂Θn



Θnew ← Θold − α · grad(J(Θold ))
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Regularization

High �capacity� (model complexity) c with respect to the number
of examples m → Over�tting

Jtest − Jtrain = k(c/m)λ

with

0.5 < λ < 1.

constant k

Jtest

Adding a regularization term to prevent over�tting (formalized in

structural risk minimization) for limiting the capacity of the subset

of the parameter space. Optimizing of an augmented error

Jtrain + λ
m

Ω(Θ)
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