
  

Deep Learning

Introduction



  http://www.technologyreview.com/featuredstory/513696/deep-learning/ 

Applications

http://www.technologyreview.com/featuredstory/513696/deep-learning/


  

AI Tasks

● High dimensional input space

● Speech - Music
● Images – Movies - Vision
● Natural Languges – Text
● ... 



  

Speech Recognition

● Speech-to-text
● Error rate on the Switchboard benchmark 

droped half due to using deep learning 

see review article by Hinton et. al. 2012 

● Current commerical systems are based on 
Deep Leaning

– Apple Siri, Google’s voice search, Bing, wit.ai 
etc.  

● Use of Deep Learning in combination with 
phonems, HMMs, etc.

http://research.microsoft.com/apps/pubs/?id=171498


  

Deep Speech

● new Publication of Dec.2014 from 
Baidu (also see Forbes): 

Awni Hannun et. al. Deep Speech: Scaling 
up end-to-end speech recognition,

– based on recurrent neural networks

– better performance and more 
robust to noise

– No phonems, no Hidden Markov 
Models, no handcrafed features 
etc.   

– Directly works on spectrogram
figure from Awni Hannun et. al. Deep Speech: 
Scaling up end-to-end speech recognition,
http://arxiv.org/abs/1412.5567 

http://www.forbes.com/sites/roberthof/2014/12/18/baidu-announces-breakthrough-in-speech-recognition-claiming-to-top-google-and-apple/
http://arxiv.org/abs/1412.5567
http://arxiv.org/abs/1412.5567
http://arxiv.org/abs/1412.5567


  

Object Recognition 
● ImageNet object LSVRC 2010 recognition benchmark

– 1000 different classes

– Competition 
● error rate with convolutional neural networks 15.3% 

Krizhevsky et.al. 2012
● second best solution (no deep learning) error rate: 

26.1%

http://image-net.org/challenges/LSVRC/2010/index
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks


  

Object Recognition 

from  Krizhevsky et.al. 2012

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks


  

● Convolutional Neural Networks are now the 
state-of-the-art in image classification

● Szegedy et.al. 2014  GoogLeNet error rate: 
for ILSVRC 2014: 6.5%

– deep network with 22 layers

● now 4.94%: K. He et.al.: Delving Deep into 
Rectifiers: Surpassing Human-Level Performance on 
ImageNet Classification

http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1502.01852


  

Natural Language Processing

● Neural Probabilistic Language Models
– Bengio et. al. 2003

– on char level - rnn: Sutskever et. al. 2012  

– Mikolov et. al. 2012 Recurrent Neural Networks

● Word Embeddings
– Mikolov et. al.

– Pennington et. al.

● Recursive neural networks, e.g. for parsing, 
sentiment analysis (Socher) etc. 

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.133.9693
http://machinelearning.wustl.edu/mlpapers/papers/ICML2011Sutskever_524
http://rnnlm.org/
http://papers.nips.cc/paper/5021-di
http://nlp.stanford.edu/projects/glove/
http://nlp.stanford.edu/sentiment/


  

(Neural) Machine Translation
● Example: Skype Online Translation

http://www.skype.com/en/translator-preview/
http://www.technologyreview.com/news/534101/something-lost-in-skype-translation/
https://gigaom.com/2014/05/28/skype-will-soon-get-real-time-speech-translation-based-on-deep-learning/

http://research.microsoft.com/en-us/news/features/translator-052714.aspx 

● Lisa Lab (Bengio): Bahdanau et. al., K. Cho 
et. al.

● Sutskever I. et. al.2014 (google) 
– 5 stacked LSTM hidden layers 

http://www.skype.com/en/translator-preview/
http://www.technologyreview.com/news/534101/something-lost-in-skype-translation/
https://gigaom.com/2014/05/28/skype-will-soon-get-real-time-speech-translation-based-on-deep-learning/
http://research.microsoft.com/en-us/news/features/translator-052714.aspx
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1409.3215


  

Automatic image captions 
● Karpathy et. al.

● Fang et. al 

also see (with a list of more papers in this field: 
http://blogs.technet.com/b/machinelearning/archive/2014/11/18/rapid-progress-in-automatic-image-captioning.aspx

● Kiros et.al.

● Vinyals et. al. 

Output of a high level representation of a Convolutional Neural Network 
as input to an LSTM recurrent neural Network

http://cs.stanford.edu/people/karpathy/deepimagesent/
http://arxiv.org/abs/1411.4952
http://blogs.technet.com/b/machinelearning/archive/2014/11/18/rapid-progress-in-automatic-image-captioning.aspx
http://arxiv.org/pdf/1411.2539v1.pdf
http://arxiv.org/abs/1411.4555


  

Further applications
● Self Driving Cars

– traffic sign detection – Ciresan et. al. 2012

– pedestrian detection - Sermanet et. al. 2013

● Image segmentation
–   Couprie et. al., Farabet et.al.

● Search / Information Retrieval
– Image Retrival 

– Music retrieval

● Robotics Yang et. al.
● Face Detection: Y. Taigman, DeepFace

http://www.idsia.ch/~juergen/nn2012traffic.pdf
http://cs.nyu.edu/~sermanet/papers/sermanet-cvpr-13.pdf
http://arxiv.org/abs/1301.3572
http://www.clement.farabet.net/pubs.html
http://www.umiacs.umd.edu/~yzyang/paper/YouCookMani_CameraReady.pdf
http://www.technologyreview.com/news/525586/facebook-creates-software-that-matches-faces-almost-as-well-as-you-do/


  

Further applications cont.
● Deep reinforcement Learning: Example Playing 

Video Games

– Playing Atari with Deep Reinforcement Learning 

– Human-level control through deep reinforcement learning

● Drug Discovery: 
https://gigaom.com/2015/03/02/google-stanford-say-big-data-is-key-to-deep-learning-for-drug-discovery/
 

● Molecular Properties: 
http://quantum-machine.org/documents/qm-icml13.pdf
  

http://arxiv.org/pdf/1312.5602
http://www.nature.com/nature/journal/v518/n7540/full/nature14236.html
https://gigaom.com/2015/03/02/google-stanford-say-big-data-is-key-to-deep-learning-for-drug-discovery/
http://quantum-machine.org/documents/qm-icml13.pdf


  

Further applications cont.
● Fraud detection (by PayPal)
● Question Answering

–

https://gigaom.com/2015/03/06/how-paypal-uses-deep-learning-and-detective-work-to-fight-fraud/


  

General Articles about Deep 
Learning in the press

● Technology review
– http://www.technologyreview.com/featuredstory/513696/deep-learning/

 

● BBC Report
– http://www.bbc.co.uk/programmes/p02kmqt1 

http://www.technologyreview.com/featuredstory/513696/deep-learning/
http://www.bbc.co.uk/programmes/p02kmqt1


  

History of NN and Deep Learning
● 1943, McCulloch Neuron

● Late 1950: Perceptron learning rule

only linear separable problems solvable => rule base expert systems 

● First revival of NN mid 1980: Backpropagation Algorithm: 
works well for one hidden layer 

● 1998 Convolutional Neural Networks of Yann LeCun : "First" 
Deep Architecture, with efficient learning

● 2006 Stacking of Restricted Boltzmann Machines to learn 
feature hierachies by Hinton

● Since 2007 second revival of Neural Networks: Deep 
Learning – with many applications



  

Success in applications?
Why now?

● Computational Power: Training on GPUs

(graphic cards)

● Big Data 
– Labeled and unlabeled (semi-supervised)

● Better Algorithms
– Learning of neural networks with many hidden 

layers 



  

Mainstream Recognition Systems
nach [LeCun]

● traditional machine learning

● traditional approach in image processing und 
speech recognition

– mid-level features, often trained unsupervised 

(hand-crafted)
Feature-Extraction

„Simple“ Trainable 
Classifier

(hand-crafted)
Feature-Extraction

„Simple“ Trainable 
Classifier

(hand-crafted)
Feature-Extraction

„Simple“ Trainable 
Classifier

(hand-crafted)
Feature-Extraction

„Simple“ Trainable 
Classifier

(hand-crafted)
Feature-Extraction

„Simple“ Trainable 
Classifier

Low-level 
Features

Mid-Level 
Features

MFCC
SIFT
HoG
LBP

Mixture-of-Gaussian
K-means
Sparse Coding

„Simple“ Trainable 
Classifier

„Simple“ Trainable 
Classifier

Classifier
(supervised)
Sometimes
structured

http://techtalks.tv/nyu/nyu-course-on-large-scale-machine-learning/?page=2


  

Trainable Feature Hierachies

● higher representations
– independent „explaining factors“ are separeted

trainable
Feature-

Transformation

„Simple“ Trainable 
Classifier

trainable
Feature-

Transformation
...

learned representations



  

What is deep learning (DL)?
● Learning of multiple levels of hierarchical 

representations
– DL is a subfield of representation learning

– Feature Learning

● Higher layer have increasing 
complexity/abstraction

– Deep architecture: multiple levels of feature 
learning

● If there are "good" representations using a 
supervised predictor on top on them is 
easy. 



  

Example of a 

feature hierachy

figure from A. Ng.  

http://www.nature.com/news/computer-science-the-learning-machines-1.14481


  

● AI tasks 
● high dimensional input space

– if the target function varies a lot (many ups and 
downs) smoothness prior is not enough.

 A classifier with non-distributed 
representation, e.g. svn with gausian 
kernel, needs exponentially (with num dims) 
many examples because of the curse of 
dimensionality

further assumptions are

necessary



  

Generalizing locally

● a state for each 
distinguishable 
region

● Number of 
distinguishable 
regions linear to the 
number of states

● exponentially ineffient
(with number of dimension of the input space)

figure from [Be09]

http://www.iro.umontreal.ca/~lisa/publications2/index.php/publications/show/239


  

Distributed Representation 

figure from [Be09]

allows non local generalization

http://www.iro.umontreal.ca/~lisa/publications2/index.php/publications/show/239


  

Manifold Hypothesis
● Data space extrem high dimensional

● Natural data "lives" in low-dimensional (non-linear) 
manifolds

● Because variables in natural data are mutually 
dependent

● Example: 

– photos/pictures vs. random pixels

from Hyvärinen et. al. Natural Image Statistics, Springer Verlag 2009

http://www.naturalimagestatistics.net/


  

Manifold

figure from [Be09]

http://www.iro.umontreal.ca/~lisa/publications2/index.php/publications/show/239


  

Semi Supervised Learning
● Assumption: Knowing p(x) helps for p(y|x)
● Clustering Hypothesis (different classes are 

separated by low probability density)



  

"transfer learning"

from Representation Learning: 
A Review and New Perspectives
Yoshua Bengio, Aaron Courville, Pascal Vincent,
http://arxiv.org/abs/1206.5538 

http://arxiv.org/abs/1206.5538


  

from
On the number of linear regions of deep neural networks.
G.Montufar, R. Pascanu, K. Cho, and Y. Bengio. NIPS 2014
http://arxiv.org/abs/1402.1869 

Depth helps

http://arxiv.org/abs/1402.1869


  

Literature

● [Be09] Yoshua Bengio, Learning Deep Architectures for AI, 
Foundations and Trends in Machine Learning, 2(1), pp.1-
127, 2009.

● [Be12] Yoshua Bengio, Aaron Courville, Pascal Vincent 
Representation Learning: A Review and New Perspectives, 
Arxiv,  2012

● Yoshua Bengio, Ian Goodfellow, Aaron Courville, 
Deep Learning, MIT Press, In preparation

http://www.iro.umontreal.ca/~bengioy/dlbook/


  

Links to Reading Lists etc.

● http://deeplearning.net/reading-list/

● http://ufldl.stanford.edu/wiki/index.php/UFLDL_Recommended_Reading

● http://web.eecs.umich.edu/~honglak/teaching/eecs598/schedule.html
 

http://deeplearning.net/reading-list/
http://ufldl.stanford.edu/wiki/index.php/UFLDL_Recommended_Reading
http://web.eecs.umich.edu/~honglak/teaching/eecs598/schedule.html
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