Unsupervised Pretraining, Autoencoder and Manifolds

Christian Herta

Outline

- Autoencoders
- Unsupervised pretraining of deep networks with autoencoders
- Manifold-Hypotheses

Problems of training of deep neural networks

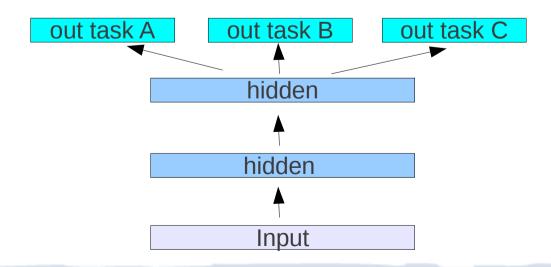
- stochastic gradient descent + standard algorithm "Backpropagation":
 - vanishing or exploding gradient: "Vanishing Gradient Problem" [Hochreiter 1991]
- only shallow nets are trainable
 - => feature engineering
- for applications (in the past): most only one layer

Solutions for training deep nets

- layer wise pretraining (first by [Hin06] with RBM)
 - with unlabeled data (unsupervised pretraining)
 - Restricted Boltzmann Machines (BM)
 - Stacked autoencoder
 - Contrastive estimation
- more effective optimization
 - second order methods, like "Hessian free Optimization"
- more carefully initialization + other neuron types (e.g. linear rectified/maxout) + dropout+ more sophisticated momentum (e.g. nesterov momentum); see e.g. [Glo11]

Representation Learning

- "Feature Learning" statt "Feature Engineering"
- Multi Task Learning:
 - learned Features (distributed representations) can be used for different tasks
 - unsupervised pretraining + supervised finetuning



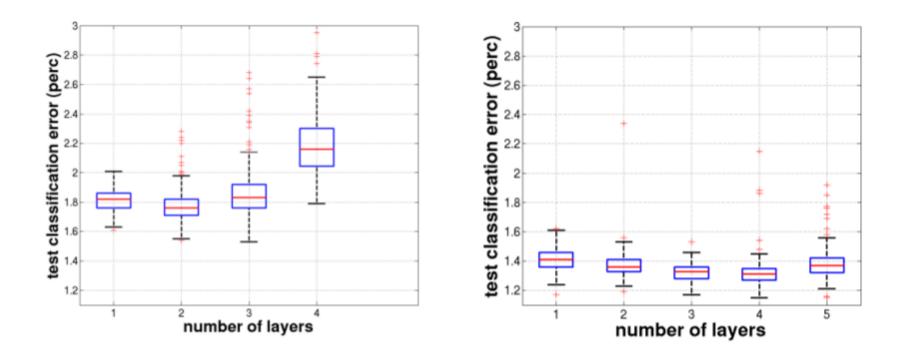
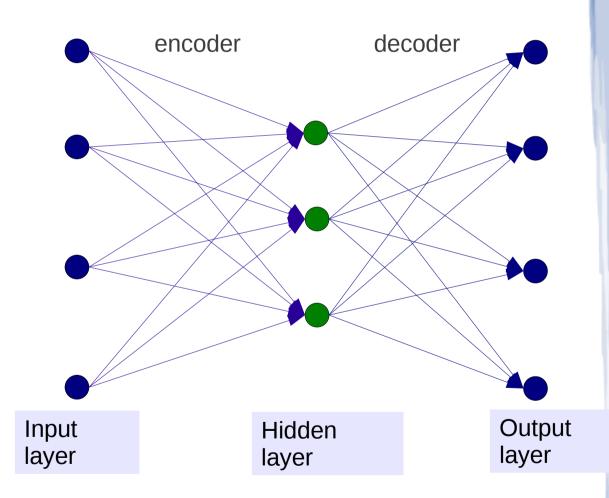


Figure 1: Effect of depth on performance for a model trained (**left**) without unsupervised pretraining and (**right**) with unsupervised pre-training, for 1 to 5 hidden layers (networks with 5 layers failed to converge to a solution, without the use of unsupervised pre-

from
Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol,
Pascal Vincent, Samy Bengio;
Why Does Unsupervised Pre-training Help Deep Learning?
JMLR2010

Layer wise pretraining with autoencoders

- Goal:
 reconstruction of
 the input
 input = output
- different constraints on hidden layers
 - small number of neurons: compression of the input
 - other kinds of constraints,
 e.g. sparse autoencoder.



Encoder-Decoder

- Encoder: $\vec{h}(\vec{x}) = s(W\vec{x} + \vec{b_h})$
 - s: element wise sigmoid
 - Parameter: W, \vec{b}_h
- Decoder: $\vec{r} = \vec{g}(\vec{h}(\vec{x})) = s_2(W^T h(\vec{x}) + \vec{b}_r)$
 - Parameter: W^T , \vec{b}_r
 - Tied weights W^T (shared with encoder)
 - activation function s₂:
 - logistic or identity

Reconstruction Error

Cost function: average reconstruction error

$$J_{AE}(\theta) = \sum_{\vec{x} \in D} L(\vec{x}, \vec{r})$$

- Reconstruction $\vec{r} = \vec{g}(\vec{h}(\vec{x}))$
- Loss function: reconstruction error
 - Squared error: $L(\vec{x}, \vec{r}) = ||\vec{x} \vec{r}||^2$
 - Bernoulli cross-entropy

$$L(\vec{x}, \vec{r}) = -\sum_{i=1}^{d} x_i \log(r_i) + (1 - x_i) \log(1 - r_i)$$

Traditional Autoencoder

- Number of hidden units smaller than number of inputs/outputs
- Hidden state is a data driven compression of the input
- similar like (non-linear) PCA

Sparse Autoencoder

- Sparsity Constraint
 - number of active hidden units should be small

$$J_{AE}(\theta) = \sum_{\vec{x} \in D} \left(L(\vec{x}, \vec{r}) + \lambda \sum_{j} |h_{j}(\vec{x})| \right)$$

(this sparsity constraint corresponds to a Lapacian prior from a probabilistic point of view)

other kinds of penalties are possible

Contractive Autoencoder (CAE) [Rif11]

Penalization of the sensitivity on the input

$$J_{CAE}(\theta) = \sum_{\vec{x} \in D} \left(\frac{L(\vec{x}, \vec{r}) + \lambda ||Jac(\vec{x})||^2}{||contraction||} \right)$$
reconstruction contraction

with the Jaccobian of the encoder

$$Jac(\vec{x}) = \frac{\partial \vec{h}(\vec{x})}{\partial \vec{x}}$$

Intuition: hidden state not sensitive to input (but reconstruction should be performed)

- and the hyperparameter λ
- also possible additionally for higher order derivatives (e.g.

Hessian)(CAE+H)

Denoising Auto-Encoder (DAE)

[Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., and Manzagol, P.-A. (2010). Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. J. Machine Learning Res., 11]

- Corruption of the input $C(\tilde{x}|x)$
 - corrupted input \tilde{x}
 - original input X
- Reconstruction of the corrupted input with the autoencoder
 - DAE learns a reconstruction distribution $P(x|\tilde{x})$
 - by the minimization of $-\log P(x|\tilde{x})$
- also sampling from the estimated distribution possible: Bengio, Y., Yao, L., Alain, G., and Vincent, P. (2013a). Generalized denoising auto-encoders as generative models. In Advances in Neural Information Processing Systems 26 (NIPS'13)

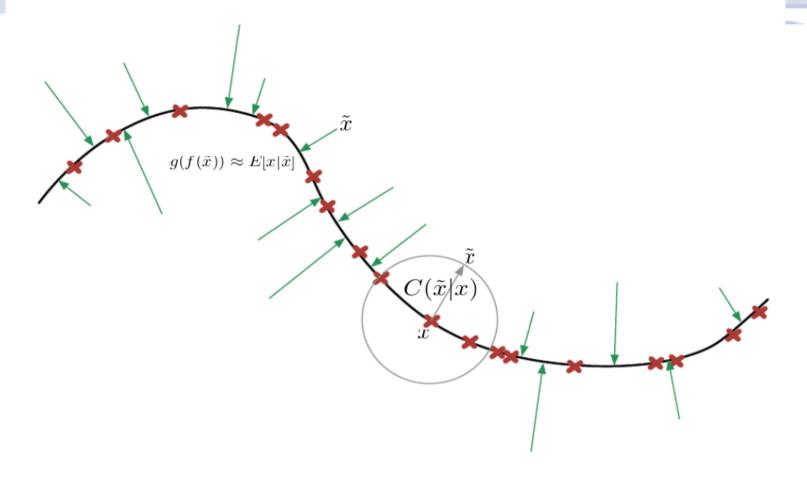
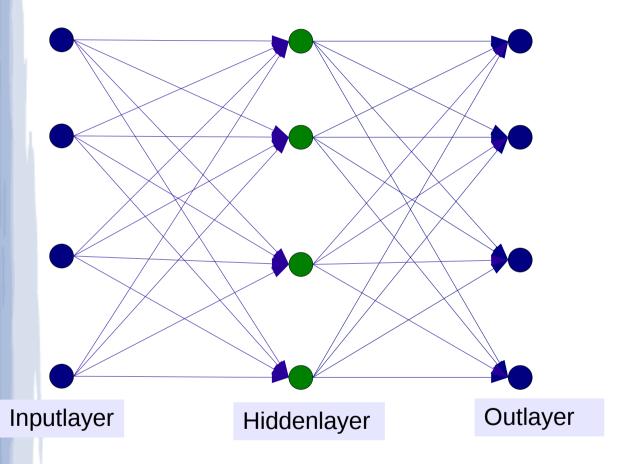


Figure 13.14: A denoising auto-encoder is trained to reconstruct the clean data point x from Bengio et. al. "Deep Learning", Book for MIT press in preparation

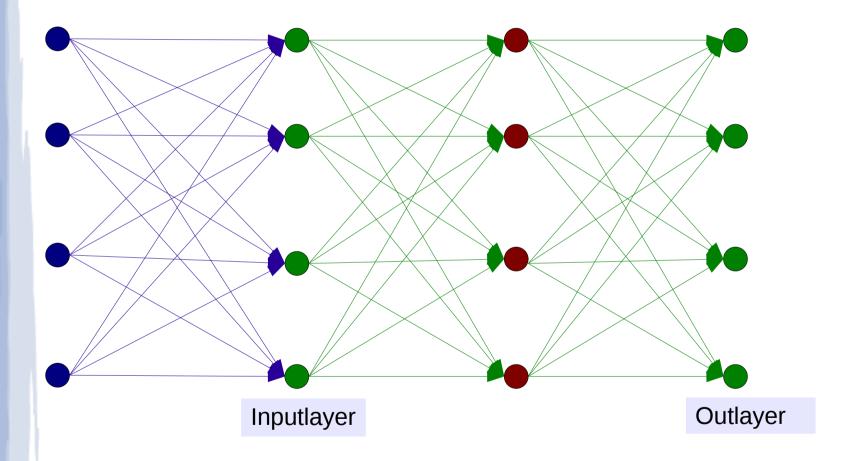
DAE learns a vector field (green arrows) which is a estimation of the gradient field $\nabla \log Q(x)$

Q(x) is the unknown data generating distribution see [Alain and Bengio, 2012] [Alain and Bengio 2013]

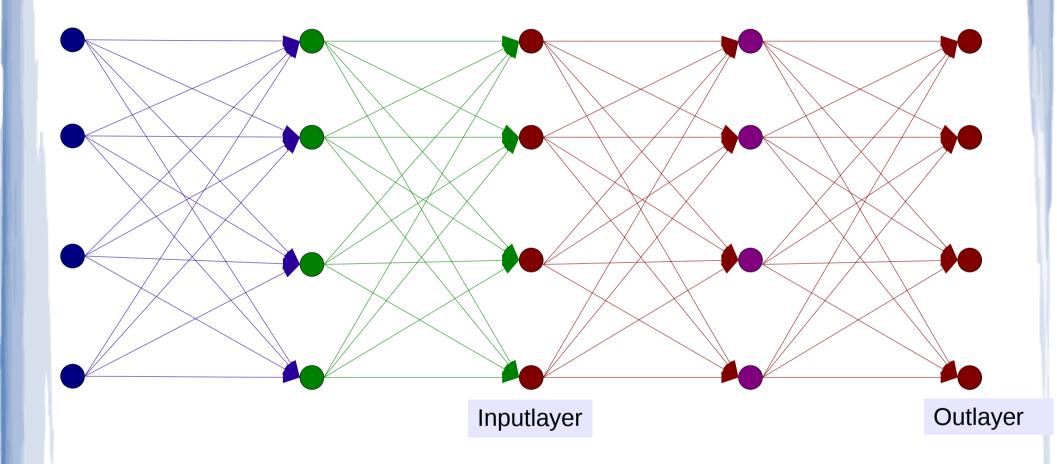
Layer-wise pretraining



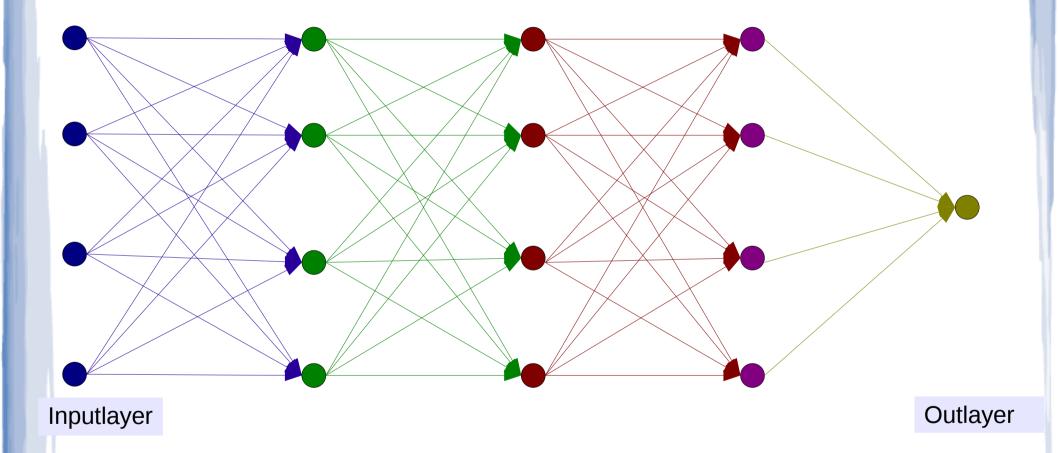
unsupervised learning of the first layer



unsupervised learning of the second layer



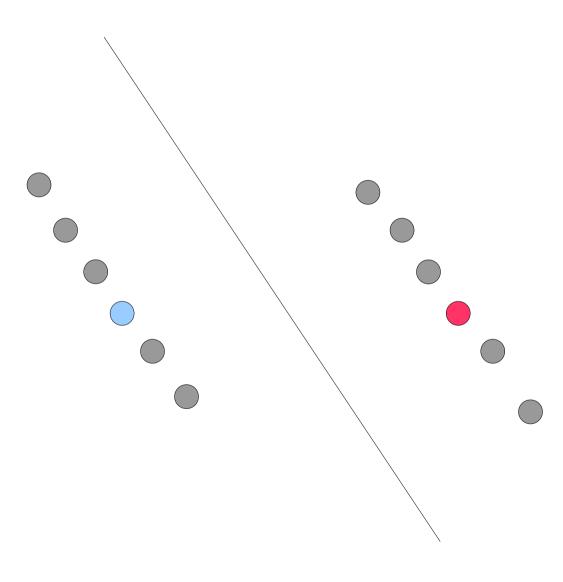
unsupervised learning of the third layer



supervised learning of the last layer

purely supervised

semi supervised



Manifolds

(Unsupervised) Manifold Hypothesis

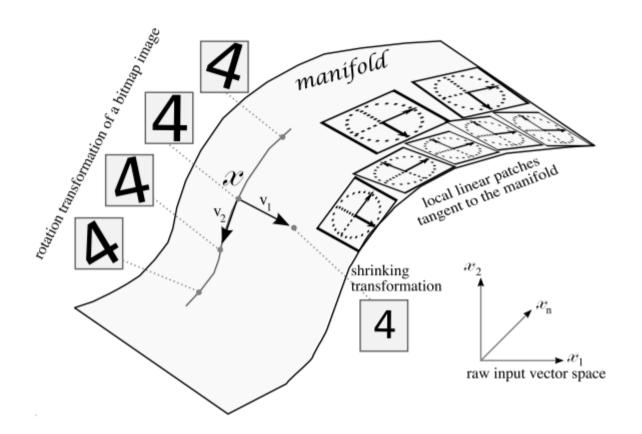
- data space extrem high dimensional
- natural data lives in a low-dimensional (non-linear)
 manifold, because variables in natural data are
 mutually dependent
- examples:
 - images vs. random pixels
 - different pictures of a face: dimension of the manifold smaller as:

number of muscles + rotations- and translations degrees of freedom

Manifold

- behaves locally like a Euclidean space
- definition in machine learning not so strict as in mathematics:
 - data is in the neighborhood of the manifold not strictly on the manifold
 - dimensionality can vary for different regions in the embedding data space
 - also for discrete spaces (text processing)

Manifold



from [Be09]

manifold learning with regularized autoencoders

• two forces:

- a) reduction of the reconstruction error
- b) pressure to be insensitive to variations of the input space (due to additional regularization constraint)

results in:

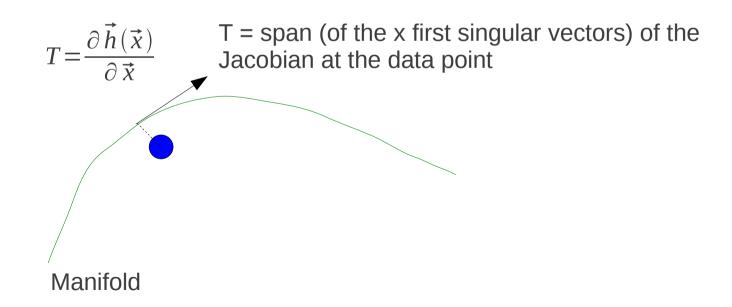
- because of b): data points are mapped by the reconstruction (encoder-decoder) on the manifold in data space
- because of a): different points are mapped to different locations on the manifold – they should be discriminable

Explicit use of manifold hypotheses and tangent directions by the manifold tangent classifier [Rif11a]

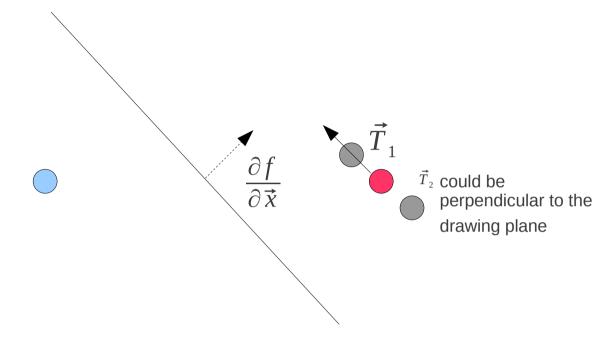
- Three Hypothesis:
 - semi-supervised learning hypothesis: learning of p(x) helps for models p(y|x)
 - unsupervised manifold hypothesis (also see slides above): data is concentrated on small subregions (sub-manifolds)
 - manifold hypothesis for classification: different classes concentrate along different submanifolds

Learning of tanget directions with CAE(+H)

- the penalty of the CAE(+H) enforces that the encoder is only sensitive to "important" directions
- directions on the manifold



Tangent Propagation Penalty



- Penalty $\sum_{T \in B_x} \left| \frac{\partial f(\vec{x})}{\partial \vec{x}} \cdot \vec{T} \right|^2$ forces that the gradient of the function (e.g. the nearby decision boundary for classification) is perpendicular to the tangent direction (local manifold patch) of the current data point x [Sim98]
- $f(\vec{x})$ is the output of the neural network
- Tangent directions $[\vec{T}_1, \vec{T}_2, ... \vec{T}_k]$ at each data point are computed from the Jacobian of the last layer representation of a CAE+H and its SVD (Singular Value decomposition) [Rif11a]

Literature

General reference: Chaper "The Manifold Perspective on Autoencoder" of Deep Learning Book (in preparation for MIT Press) 2014; Yoshua Bengio and Ian J. Goodfellow and Aaron Courville

Ng's lecture notes to Sparse Autoencoder

- [Be09] Yoshua Bengio, Learning Deep Architectures for AI, Foundations and Trends in Machine Learning, 2(1), pp.1-127, 2009.
- [Glo11] Xavier Glorot, Antoine Bordes and Yoshua Bengio, Deep Sparse Rectifier Neural Networks, Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, 2011
- [Rif11] S. Rifal, P. Vincent, X. Muller, Y. Bengio; Contractive autoencoders: explicit invariance during feature extraction. ICML 2011
- [Rif11a] S. Rifal, Y. Dauphin, P. Vincent, Y. Bengio, X. Muller; The Manifold Tangent Classifier, NIPS 2011
- [Vin10] Vincent, Pascal and Larochelle, Hugo and Lajoie, Isabelle and Bengio, Yoshua and Manzagol, Pierre-Antoine, Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion, J. Mach. Learn. Res., 2010

Autoencoders with Theano

- Denoising Autoencoder:
 - http://deeplearning.net//tutorial/dA.html
 - http://deeplearning.net/tutorial/SdA.html
- Contractive Autoencoder
 - https://github.com/lisa-lab/DeepLearningTutorials/k