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Problems of training of deep neural 
networks

● stochastic gradient descent + standard 
algorithm "Backpropagation":

vanishing or exploding gradient: "Vanishing 
Gradient Problem" [Hochreiter 1991]

● only shallow nets are trainable  

 => feature engineering
● for applications (in the past): most only one 

layer  



  

Solutions for training deep nets
● layer wise pretraining (first by [Hin06] with RBM) 

– with unlabeled data (unsupervised pretraining) 
● Restricted Boltzmann Machines (BM) 
● Stacked autoencoder
● Contrastive estimation

● more effective optimization 
– second order methods, like "Hessian free 

Optimization"

● more carefully initialization + other neuron 
types (e.g. linear rectified/maxout) + dropout+ more 

sophisticated momentum (e.g. nesterov momentum);  see 

e.g. [Glo11] 



  

Representation Learning

● "Feature Learning" statt "Feature 
Engineering"

● Multi Task Learning:
– learned Features (distributed representations) can be 

used for different tasks

– unsupervised pretraining + supervised finetuning
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from
Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol, 
Pascal Vincent, Samy Bengio; 
Why Does Unsupervised Pre-training Help Deep Learning?
JMLR2010



  

Layer wise pretraining with autoencoders 



  

Autoencoder

Input 
layer

Output
layer

Hidden 
layer

● Goal: 
reconstruction of 
the input
input = output

● different constraints 
on hidden layers

– small number of  neurons: 
compression of the input 

– other kinds of constraints, 
e.g. sparse autoencoder.

 

encoder decoder



  

Encoder-Decoder

● Encoder:
– s: element wise sigmoid

– Parameter: 

h x =s W xbh

r=g h x =s2W
T hx br

W , bh

W T , br

● Decoder:
– Parameter:

– Tied weights       (shared with encoder)

– activation function    :  
● logistic or identity

W T

s2



  

Reconstruction Error

● Cost function: average reconstruction error

– Reconstruction 

J AE =∑
x∈D

L x ,r 

● Loss function: reconstruction error 
– Squared error:

– Bernoulli cross-entropy 

Lx ,r =∥x−r∥2

r=g h x 

Lx ,r =−∑i=1

d
x i log r i1−x i log 1−ri



  

Traditional Autoencoder

● Number of hidden units smaller than number 
of inputs/outputs

● Hidden state is a data driven compression of 
the input 

● similar like (non-linear) PCA



  

Sparse Autoencoder

● Sparsity Constraint
– number of active hidden units should be small

(this sparsity constraint corresponds to a Lapacian prior from a probabilistic point of view) 

– other kinds of penalties are possible

J AE =∑
x∈D Lx ,r ∑j

∣h j x ∣



  

Contractive Autoencoder (CAE)
[Rif11]

● Penalization of the sensitivity on the input

JCAE =∑
x∈D

Lx ,r ∣∣Jac x ∣∣
2 

Jac x =
∂h x 
∂x

– with the Jaccobian of the encoder

– and the hyperparameter
● also possible additionally for higher order derivatives (e.g. 

Hessian)(CAE+H) 

contractionreconstruction

Intuition: hidden state not sensitive 
    to input (but reconstruction should 
    be performed)



  

Denoising Auto-Encoder (DAE)
[Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., and Manzagol, P.-A. (2010). Stacked denoising autoencoders: 

Learning useful representations in a deep network with a local denoising
criterion. J. Machine Learning Res., 11]

● Corruption of the input
– corrupted input

– original input 

● Reconstruction of the corrupted input with the 
autoencoder

– DAE learns a reconstruction distribution

– by the minimization of

● also sampling from the estimated distribution possible: Bengio, Y., Yao, L., 
Alain, G., and Vincent, P. (2013a). Generalized denoising auto-encoders 
as generative models. In Advances in Neural Information Processing 
Systems 26 (NIPS’13)

C  x∣x 

x
x

−log Px∣x 
Px∣x



  

DAE learns a vector field (green arrows) which is a estimation of the gradient  
   field 
        Q(x) is the unknown data generating distribution
 see [Alain and Bengio, 2012] [Alain and Bengio 2013]
  

from Bengio et. al. "Deep Learning", Book for MIT press in preparation

∇ log Q x 



  

Layer-wise pretraining



  

Autoencoder

Inputlayer OutlayerHiddenlayer

● unsupervised learning of the first layer



  

Autoencoder

Inputlayer Outlayer

● unsupervised learning of the second layer



  

Autoencoder

Inputlayer Outlayer

● unsupervised learning of the third layer



  

Autoencoder

Inputlayer Outlayer

● supervised learning of the last layer



  

purely supervised



  

semi supervised



  

Manifolds



  

(Unsupervised) Manifold Hypothesis

● data space extrem high dimensional

● natural data lives in a low-dimensional (non-linear) 
manifold, because variables in natural data are 
mutually dependent

● examples: 

– images vs. random pixels

– different pictures of a face: dimension of the 
manifold smaller as:

 number of muscles + rotations- and 
translations degrees of freedom 



  

Manifold

● behaves locally like a Euclidean space 
● definition in machine learning not so strict as 

in mathematics:
– data is in the neighborhood of the manifold - 

not strictly on the manifold

– dimensionality can vary for different regions in 
the embedding data space 

– also for discrete spaces (text processing)



  

Manifold  

from [Be09] 



  

manifold learning with regularized 
autoencoders 

● two forces:
– a) reduction of the reconstruction error

– b) pressure to be insensitive to variations of 
the input space (due to additional 
regularization constraint)

● results in:
– because of b): data points are mapped by the 

reconstruction (encoder-decoder) on the manifold in 
data space

– because of a): different points are mapped to different 
locations on the manifold – they should be 
discriminable     



  

 

● Three Hypothesis:
– semi-supervised learning hypothesis: learning 

of p(x) helps for models p(y|x)

– unsupervised manifold hypothesis (also see slides 

above): data is concentrated on small sub-
regions (sub-manifolds)

– manifold hypothesis for classification: different 
classes concentrate along different sub-
manifolds

 Explicit use of manifold hypotheses and tangent 
directions by the manifold tangent classifier

[Rif11a] 



  

Learning of tanget directions
with CAE(+H)

● the penalty of the CAE(+H) enforces that the 
encoder is only sensitive to "important" directions 
– directions on the manifold

T=
∂h x 

∂ x

T = span (of the x first singular vectors) of the 
Jacobian at the data point 

Manifold



  

Tangent Propagation Penalty

∂ f
∂x

● Penalty                   forces that the gradient of the function (e.g. the 
nearby decision boundary for classification) is perpendicular to the 
tangent direction (local manifold patch) of the current data point x 
[Sim98]

●           is the output of the neural network

● Tangent directions                    at each data point are computed from the 
Jacobian of the last layer representation of a CAE+H and its SVD 
(Singular Value decomposition) [Rif11a]

∑T∈Bx∣
∂ f x 

∂ x
⋅T∣

2

T 1

[ T 1,
T 2, ... T k ]

T 2 could be  
perpendicular to the

drawing plane 

f x 
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Autoencoders with Theano

● Denoising Autoencoder:
– http://deeplearning.net//tutorial/dA.html 

– http://deeplearning.net/tutorial/SdA.html

● Contractive Autoencoder
– https://github.com/lisa-lab/DeepLearningTutorials/blob/master/code/cA.py

  

http://deeplearning.net//tutorial/dA.html
http://deeplearning.net/tutorial/SdA.html
https://github.com/lisa-lab/DeepLearningTutorials/blob/master/code/cA.py
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